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Abstract: Since the electric power cannot be stored for long time, the spot prices of electricity are 
extremely volatile. In order to control risks, it is necessary to introduce financial derivatives into 
electricity markets. This paper mainly studies the pricing of electricity swing options, which are 
widely applied in financial markets for electricity. Through finite difference and discretization of 
transaction time and price, the issue of swing option pricing is transformed to a linear 
complementary problem. At the same time, the optimization model is established by combining 
optimal behaviors of swing option buyers. Finally, through the actual data of electricity futures, 
above model and algorithm are used to simulate the pricing of swing options. 

1. Introduction 
Swing options are also known as take-and-pay options. The contract lets option holders buy 

underlying assets repeatedly according to the bid price in the holding period. But the maximum and 
minimum quantities of underlying assets an option holder can buy at one time are predetermined, so 
as the total assets bought by the holder during the whole holding period. During the exercise period, 
option holders can change (swing) the pace of purchases, but generally speaking, the number of 
changes is also limited. 

Thanks to the flexible delivery, electricity swing options are now considered as the most 
convenient and important financial derivatives among various financial instruments in the 
electricity market. The sellers of electricity swing options are mostly large electricity plants; the 
buyers are generally public electricity distributors. They set the retail price of electric power, and 
face the risks of electrical load and spot price. It is necessary for them to buy swing options to 
hedge risks. 

Option holders can decide the delivery quantity and exercise time according to optimal strategy, 
while sellers have the right to set upper and lower bounds of delivery price and quantity. Swing 
options pricing is a complex issue. 

Literature on swing option pricing without regard to underlying assets includes Eydeland and 
Geman (1998) as well as Davison and Anderson (2003) [1-2]. According to the no arbitrage 
principle, the value of swing options is calculated for option holders, so as to achieve swing option 
pricing. Thompson (1995), as well as Carmona and Touza (2006) take the perspective of buyers, 
and consider swing options as American options which can be exercised for many times [3-4]. Lari 
(2001) and Jaillet (2004) take the issue of swing options pricing as buyers’ stochastic dynamic 
programming problem, in which the price changes of underlying commodities can be processed 
through binary tree or forest tree methods [5-6]. Longstaff and Schwartz (2001), as well as Ibanez 
(2004) assume that the price of underlying commodity is amenable to the mean reversion model 
[7-8]. Based on that, the Least Squares Monte Carlo simulation method is employed to solve the 
problem of swing option pricing. 

As for the spot pricing of electricity swing options, Haarbrucker and Kuhn (2009) take it as the 
multistage stochastic optimization problem of buyers and sellers of swing options. The optimal 
value is equivalent to the expected economic benefits electricity swing options can bring for holders, 
in which the price of electricity can be processed through binary tree method [9]. At the same year, 
Broussev and Pflug (2009) analyze the optimal decisions of sellers and buyers, and draw the penalty 
function in case of option holders break the contract (the quantity or number of purchase is out of 
scope) [10]. Considering that the decision of both sides can affect each other’s’ optimal decision, 
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Broussev and Pflug (2014) regard the pricing of electricity swing options as a bi-level programming 
problem, in which the seller of electricity swing options is the top decision maker who formulates 
different objective functions according to market situation [11]. 

However, electricity spot price fluctuates greatly. It is difficult to predict the price accurately. 
Direct delivery occupies only a small part of electricity market. Large electricity producers and 
dealers tend to control the risk of spot price through financial derivatives; well-developed electricity 
futures are used most frequently. 

Based on above reasons, this paper takes a different perspective from previous studies. The 
electricity futures, rather than the swing option of spot electricity, are considered as the underlying 
assets. According to the requirements of both sides, buyers and sellers can sign the electricity 
delivery contract on the grounds of appropriate delivery mode. This method is suitable for practical 
application, and makes up for the deficiency of non-storage electric power. The non arbitrage 
principle can be used to price it. Combined with the optimal behavior of buyers, an optimization 
model can be set to achieve the pricing of electricity swing options. 

2. Option Pricing Model for Electricity Swing Futures  
2.1 Analysis on the pricing of swing options on electricity futures 

The contract of electricity swing options allow multiple times of exercise in the contract period, 
but the time interval is predetermined. For the sake of simplicity, we consider each exercise happens 
in an equally divided time interval. The contract duration is equally divided into T  stages, i means 
at which stage, it  means at which time node, in which   {1,2, , }i T∈  . In each stage, the buyer of 
swing option must exercise for one time, but he has the right to decide when to exercise and the 
delivery quantity. 

In order to better analyze the issue of electricity swing option pricing, the quantity of electric 
futures delivered at one time is set as one unit. Researchers start from the time period of the last T 

stage, [ 1Tt − , Tt ]. If only this period of time is considered, the buyer of the swing option can decide to 
deliver a unit of electricity futures at any time in this period. At this point, the price of the electricity 

swing option at the time of 1Tt −  is equivalent to the price of a futures contract which can be 
delivered ahead of time. Since the subject matter is electric electricity futures, the principle of no 
arbitrage can be used to achieve pricing. In the risk-neutral world, when only the time period of 

[ 1Tt − , Tt ] is considered, the Black-Scholes-Merton partial differential equation of the swing futures 

option at the time of 1Tt −  is: 
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At that time, the pricing of swing options is similar to the pricing of American options. Based on 

Black-Scholes-Merton partial differential equations, the pricing of American option is achieved. In 
this paper, finite difference processing method is used to solve the problem of option pricing. Finite 
difference method can convert Black-Scholes-Merton partial differential equations into differential 
equations which are relatively easy to solve, and transform the pricing issue into a complementary 
problem according to the characteristics of American options. Then the algorithm of complementary 
problem can be used to achieve the solution. 

In reference to [12], the pricing problem of formula (1) can be written as following partial 
differential inequalities: 
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Through difference approximation, the left end of the partial differential inequality can be 
approximated as: 
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According to above finite difference approximation, the finite dimensional linear complementary 
problem can be transformed into a set of finite dimensional linear complementary problems: 

1
1 1 10  ( )  (  )  0,    = 1, 2, , 1, 0l l l

T T TV MV M V l L L+
− − −′≤ −L ⊥ + ≥ − −             (3) 

In which ⊥  means that two vectors are orthogonal, and the inner product is zero. For example, 
x y⊥  means

  = 0Tx y , 1
l

TV − and Λ  are the following N dimensional vectors. 

















⋅⋅⋅≡

−

−

−
l

NT

T
l

T

V

V
V

,1

1
1,1

1

  
















Λ
⋅⋅⋅

Λ
≡Λ −

N

l
T

1

1

 
Where M is a matrix of N N× as following: 
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Elements in M are: 

 
2 21 = ,    = 1, , 

2na n n Nσ θ− 

 
2 21 =     ,    = 1, , nb r n n N

t
σ θ

δ
+ + 

 
M’ is a matrix shaped like M, and the elements in the matrix are as following: 
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If the holder exercises at the deadline Tt , the price of swing option at the time of 1Tt − is equal to 

the value of income function, that is 1 =L
TV − L . When the electricity swing option buyer set the 

delivery price as K,  Λ can be regarded as given. At that time, the linear complementary problem (3) 

can be solved by reversing the discrete time points  = 1, 2, , 1, 0l L L− −  . 
0

1 TV − can also be 
calculated. 

Now, the actual duration of electricity swing options is [0, Tt ]; the total duration is divided into T 

stages. In each stage, the price of swing options in the time period of [ it , 1it + ]，   {0, 1, , 1}i T∈ − is 
considered. In this paper, the finite difference method is used to transform the 
Black-Scholes-Merton partial differential equation to linear complementary constraint, which can 
be directly applied to solve the problem of price of multi-stage derivatives which can be exercised 
in advance. The following equation is established: 

0
1 = ,    = 1, 2, , L

i iV V i T−                               (4) 
0 iV in each stage is the 1 

L
iV − in previous stage. 

0
1 iV −  in previous stage can be obtained by 

inversion. Therefore, we can get 
0

0  V after inversion step by step. Assuming that the quantity of 

deliveries is one unit, 
0

0  V is the price of electricity swing option at the initial time. 

2.2 Behaviors of option buyers 
The valuation of any contract should include the optimal exercise strategy of option owners. 

Both hedgers and speculators aim to maximize their profits. Since the prices of electricity futures 
are stochastic, the simplest objective function of the contract buyer is to maximize the expected 
return. 

The buyer of swing option can set the delivery price of each unit of electricity futures as K when 
signing the contract, and has the right to decide the delivery quantity at each stage in the future. If 

the amount of electricity futures expected to be delivered at each stage is iz ,   {1,2,3, , }i T∈  , then 
iz is the amount of delivery within the time period of 1[ , ]i it t− . In the real financial market, the 

quantities of deliveries must be decided in advance for a period of time (usually one day). Thus, the 
buyer needs to decide the delivery quantity at next stage in advance. 

Usually, the contract states the upper and lower bounds of delivery quantity at each stage, so as 
the total amount of delivery. The constraints associated with the number of deliveries can be 
expressed as 

             { 1, 2,3, ,  }i i ie z e i T≤ ≤ ∀ ∈                         (5) 

 =1
    

T

i
i

E z E≤ ≤∑
                         (6) 

The formula (5) represents the upper and lower bounds of iz , the number of deliveries in the i 
stage, while formula (6) represents the upper and lower bounds of the total delivery quantity in the 
contract duration. Combining with the objective functions of electricity swing option buyers, which 
is to maximize the expected earnings, and supposing that the seller of swing option has set the 
delivery price as K, and the contract is a call option, the optimization problem of buyers can be 
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3. Model Calculation 
Solution of linear complementary problem. Firstly, the properties of complementary problem 

of electricity swing option pricing are analyzed. In order to explain the issue more intuitively, 
1 = l

Tx V − − Λ and
1
1 =  l

Tq Mx M M V +
−′+ Λ +  are transformed. It should be noticed that since the reverse 

deduction method is used, 1
l

TV −  can be regarded as given in the time period of
1

1 1[ , ]l l
T Tt t +
− − , and the 

problem of (3) can be simplified as following:  

   0,      0,     ( ) = 0Tx Mx q x Mx q≥ + ≥ +                   (8) 
In view of above problems, the existence and uniqueness of the solution are proved, and the 

following lemma is proposed in reference [13].  
Lemma 3.1: if a square matrix A is a strictly diagonally dominant matrix, and all diagonal 

elements in A are positive, then A is a P matrix.  

The matrix mentioned above  = ( )ijA a is a strictly diagonally dominant matrix, which is 
equivalent to following formula:  

   
| | > | |,    = 1, 2, , ii ij

j i
a a i n

≠
∑ 

 
If a square matrix is a P matrix, all its principal minors are positive. According to reference [14], 

following conclusions on P matrix are established.  
Proposition 3.1: if a square matrix   n nA ×∈ℜ is a P matrix, then the linear complementary 

problem has a unique solution for any   nq∈ℜ .  
 0      0x Ax q≤ ⊥ + ≥  
Theorem 3.1: the matrix M in the complementary problem transformed from the pricing model 

of electricity swing options is a P matrix, and the complementary problem has a unique solution.  
Proof: first, it is obvious that the diagonal elements of matrix M are positive. According to 

Lemma (3.1), in order to prove that the matrix M is a P matrix, it is necessary to prove that the 

matrix M is a strictly diagonally-dominant matrix. Notice that all ,   = 1  , nb n N  are positive, and 

all ,   = 1, , na n N are negative, then: 
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Obviously, the values of above equations are greater than zero. So the matrix M is a P matrix. 
According to Lemma (3.1), there is a unique solution to the complementary problem transformed 
from the pricing model of electricity swing options in this paper.  

The coefficient matrix M has a lot of good properties, and the size of the linear complementary 

175



 

 
 

problem is becoming larger and larger as the difference step size gets smaller and smaller. So in this 
paper, though interior point method and smoothing Newton method have good convergence and 
accuracy, they are not applicable to solve the linear complementary problem due to high 
computational cost. The solution in this paper is similar to fixed point algorithm at the beginning. 
The linear complementary problem is transformed to a set of large-scale linear equations with fixed 
points first. Then the over relaxation iteration method is used to solve to large-scale linear equations 
set.  

4. Numerical Experiment 
Based on actual data about electricity futures provided by Chicago Mercantile Exchange, the 

model and algorithm provided in this paper are used to price electricity swing options. A valid 
contract on electricity futures is selected from CME official website. ( The underlying futures are 
electricity futures which has been traded in New York Electricity Exchange for a month; each unit 

of future permits the delivery of 5 megawatt hour.) The duration is 30 days ( = 30Tt  days). One 
time of delivery is permitted every day (the duration can be divided into 30 stages,  = 30T ). 
Assuming that the amount of delivery at one time lies between 1 and 3 units of electricity futures, 
the total delivery amount is 40 to 60 units of electricity swing options. 

Next, the model and algorithm proposed in this paper are used to achieve the pricing of 
electricity swing option. First of all, when building the model, parameters r,σ ,θ  and r should be 
set as risk-free interest rates. The yields on 10-year Treasury bonds,   2.54%r ≈ , is generally 
chosen.  

σ  represents the volatility of the random process of electricity futures price. Through historical 
data provided by CME and seasonal characteristics, assuming that the trading month of electricity 
swing options is the whole April (30 days), through data a few years ago to estimate the volatility of 
electricity futures price of electricity swing options, the volatility is estimated as 1  32.55%σ ≈ .  

Secondly, the difference parameter θ  is selected. The Crank-Nicolson difference method is 
used according to reference [14], namely  = 1/ 2θ  

Now consider the price of electricity futures and time difference step. From historical data it can 
be found that electricity futures price is no less than $15 and no more than $30 per unit in April. The 
difference step of electricity futures price is selected as  = 100N ; the length of difference step is 
selected as  = 0.15Fδ ; the time difference step as  = 24L . The length of difference step is selected 
as  = 0.15Fδ , means to divide one day into 24 hours.  

With the assumption of above parameters, the elements of na and nb in matrix M can be 
obtained:  

  
2 21 =  0.3255  ,    = 1, , 

4na n n N− 

 

  
2 2 21 = 0.0254  24   0.3255  ,    = 1, , 

2nb n n Nσ+ + 

 
Similarly, we can get the elements of ’na and ’nb in matrix M’: 

    
223255.0

4
1 nan −=’

, Nn ,,1 ⋅⋅⋅=  

    
223255.0

2
124 nbn +−=’

, Nn ,,1 ⋅⋅⋅=  
Assuming that the optimal delivery price  = 22K , and substituting it into problem (2.3), the 

solution of 
0

0V  is a matrix with 100 rows and 1 column. From CME data it can be known that the 
initial price of electricity futures is $19.73, corresponding to the interval of electricity futures price 
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in 
0

0V . The price of electricity swing option per delivery unit is calculated as approximate $23.7. 
Then considering buyers’ optimal purchase amount at each stage, the electricity swing option price 
is finally obtained as $2004. 

 Besides, this paper also selects different step lengths of time difference without regard to 
seasonal influence. According to data of the first few months, the volatility rate is gotten 
as 2  43.74%σ ≈ . The prices of electricity swing options are calculated as follows.   

Time difference   1 day        4 hours     1 hour       30 minutes 

  σ 1            2328.3692    2396.8280    2004.1351    1458.8847 

  σ 2            3344.8208    3171.2810    2441.8448    1578.7603 

It can be found that with the decrease of difference step length and the increase of the difference 
step number, the prices of electricity swing option are constantly revised and reduced. Under the 
same length, electricity swing option price increase with the rising volatility: it accords with the 
actual situation. So the overall experiment prices are higher because of the high volatility of 
electricity futures price. It can be inferred in summer and winter (volatility are higher), the 
electricity swing option prices should be even higher, which is also consistent with the reality. 

5. Conclusion and Outlook 
In this paper, the pricing of electricity swing options is achieved with electricity futures 

considered as the underlying asset. Through finite difference and discretization of transaction time 
and price, the issue of swing option pricing is transformed into a linear complementary problem. 
Furthermore, combined with optimal behaviors of buyers, the pricing of electricity swing option can 
be more accurate. It can be found that optimal decisions of buyers and sellers can affect each other, 
so a bi-level programming model is established to price the electricity swing options. At the same 
time, in reality, buyers do not need to strictly control the purchase amount at each stage in 
accordance with sellers’ permission. Purchase amount less than lower bound or more than upper 
bound is acceptable, but the buyer need to pay the penalty for breach of contract. So buyers’ optimal 
behavior can be considered as mathematical programming problems with penalty function, rather 
than trading restriction in purchase amount. 
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